A New Model of Mixture Distribution Using a Survival Analysis of Cancer Patients

Conteúdo do artigo principal

M. Sakthivel
P. Pandiyan

Resumo

In this article, specific statistical considerations are typically required in order to select the best model for fitting cancer survival data. A new two-parameter distribution known as the Mixture of Lomax and Gamma Distribution (MLGD) is proposed in this article. Because of the unique way that the Gamma and Lomax distributions are mixed, this distribution is created as a special mixture of two distributions. Statistical properties, order statistics, entropy, and reliability analysis are also derived. The maximum likelihood estimation method can be used to estimate the parameters of the distribution. Lastly, a goodness-of-fit analysis is demonstrated on a set of data on cancer survival. It is compared to the fit and shows that the gamma and Lomax mixing distributions have more flexibility than the other distributions.

Detalhes do artigo

Como Citar
Sakthivel, M. ., & Pandiyan, P. . (2025). A New Model of Mixture Distribution Using a Survival Analysis of Cancer Patients . REVISTA BRASILEIRA DE BIOMETRIA, 43(1), e43733. https://doi.org/10.28951/bjb.v43i1.733
Seção
Articles

Referências

Alam, F., Alrajhi, S., Nassar, M., & Afify, A. Z. Modeling liver cancer and leukemia data using arcsine-Gaussian distribution. Computers, Materials & Continua (CMC), 67(2), 2185-2202, (2021). http://dx.doi.org/10.32604/cmc.2021.015089

Abiodun, Alfred Adewole, and Aliyu Ismail Ishaq. "On Maxwell–Lomax distribution: properties and applications." Arab Journal of Basic and Applied Sciences 29, no. 1 (2022): 221-232. http://dx.doi.org/10.1080/25765299.2022.2093033

Anderson, T.W., Darling, D.A. Asymptotic theory of certain ‘goodness-of- fit’ criteria based on stochastic processes. Ann. Math. Stat., 23, 193–212, (1952) http://dx.doi.org/10.1214/aoms/1177729437

David, H. A. Order Statistics, Wiley & Sons, New York (1970).

Ghitany, M. E., Atieh, B., & Nadarajah, S. Lindley distribution and its application. Mathematics and computers in simulation, 78(4), 493-506 (2008). http://dx.doi.org/10.1016/j.matcom.2007.06.007

Fisher, R. A. (1934): “The effect of methods of ascertainment upon the estimation of frequencies”, Annals of eugenics. Wiley Online Library, vol 6(1), pp 13–25 (2008). https://doi.org/10.1111/j.1469-1809.1934.tb02105.x

J. J. Swain, S. Venkatraman, and J. R. Wilson, “Least-squares estimation of distribution functions in Johnson’s translation system,” Journal of Statistical Computation and Simulation, vol. 29, no. 4, pp. 271–297, (1988). http://dx.doi.org/10.1080/00949658808811068

Klakattawi, H. S. Survival analysis of cancer patients using a new extended Weibull distribution. Plos one, 17(2), e0264229 (2022). https://doi.org/10.1371/journal.pone.0264229

Lindley DV. Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society, Series B.20(1):102–107 (1958). https://www.jstor.org/stable/2983909

Mansour, M., Yousof, H. M., Shehata, W. A., & Ibrahim, M. A new two parameter Burr XII distribution: properties, copula, different estimation methods and modeling acute bone cancer data. Journal of Nonlinear Science and Applications, 13(5), 223-238 (2020). http://dx.doi.org/10.22436/jnsa.013.05.01

Newcomb, S. “A generalized theory of the combination of observations so as to obtain the best result”, American Journal of Mathematics, vol 8, pp 343–366 (1886). 10.2307/2369392

P. Macdonald, “An estimation procedure for mixtures of distributions,” Journal of the Royal Statistical Society, vol. 20, pp. 102–107 (1971).

Pearson, K. “Contributions to the mathematical theory of evolution”, Philosophical Transactions of the Royal Society, vol 185, pp 71-110 (1894). https://doi.org/10.1098/rsta.1894.0003

Lomax, Kenneth S. "Business failures: Another example of the analysis of failure data." Journal of the American statistical association 49, no. 268, 847-852 (1954). 10.12691/ajams-7-5-3

Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics Vol. 4, pp. 547-562 (1961).

R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2021). https://www.R-project.org

Ristić, M.M., Balakrishnan, N. The Gamma exponentiated exponential distribution. J. Stat. Comput. Simul. 82(8), 1191–1206 (2012). http://dx.doi.org/10.1080/00949655.2011.574633

Shanker R. Shanker distribution and its applications. International Journal of Statistics and Applications. a; 5(6):338–348 (2015). 10.5923/j.statistics.20150506.08.

Shanker R. Akash distribution and its applications. International Journal of Probability and Statistics.b;4(3):65–75 (2015).

5923/j.ijps.20150403.01.

Shanker R. Garima distribution and its application to model behavioral science data. Biometrics & Biostatistics International Journal.4(7):1–9 (2016). https://doi.org/10.15406/bbij.2016.04.00116

Shanker, R. Komal distribution with properties and application in survival analysis. Biometrics and Biostatistics International Journal, 12(2), 40-44 (2023). http://dx.doi.org/10.15406/bbij.2023.12.00381.

Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 52, 479-487 (1988).

1007/BF01016429.

Telee, Lal Babu Sah, Ram Suresh Yadav, and Vijay Kumar. "Modified Lomax Distribution: Properties and Applications, (2024). http://dx.doi.org/10.21203/rs.3.rs-4265580/v1

Tahir, Muhammad H., Gauss M. Cordeiro, M. Mansoor, and Muhammad Zubair. "The Weibull-Lomax distribution: properties and applications." Hacettepe Journal of Mathematics and Statistics 44, no. 2 ,455-474 (2015). http://dx.doi.org/10.2991/jsta.2017.16.4.6

Teichroew, D. “The mixture of normal distributions with different variances”, The Annals of Mathematical Statistics, vol 28(2), pp 510–512 (1957).

Wang, Q. A. Probability distribution and entropy as a measure of uncertainty. Journal of Physics A: Mathematical and Theoretical, 41(6), 065004 (2008). 10.1088/1751-8113/41/6/065004.

Weldon, W. F. R. “Certain correlated variations in Crangon Vulgaris”, Proceedings of the Royal Society, vol 51, pp 2–21 (1892). https://www.jstor.org/stable/4027511

Zakerzadeh, Hojjatollah, and Eisa Mahmoudi. "A new two parameter lifetime distribution: model and properties." arXiv preprint arXiv:1204.4248 (2012). https://doi.org/10.48550/arXiv.1204.4248.