A framework for building enviromics matrices in mixed models
Conteúdo do artigo principal
Resumo
This study unravels a framework for constructing enviromics matrices within mixed models to integrate genetic and envirotypic data, enhancing phenotypic predictions in plant breeding. Enviromics leverages diverse data sources, such as climate and soil, to characterize genotype-by-environment (G×E) interactions. The approach uses block-diagonal structures in the design matrix to incorporate random effects from genetic and envirotypic covariates across trials. The covariance structure is modeled through the Kronecker product of the genetic relationship matrix and an identity matrix representing envirotypic effects, effectively capturing both genetic and environmental variability. This dual representation facilitates more accurate predictions of crop performance across environments, enabling improved selection strategies in breeding programs. The framework is compatible with widely used mixed model software, including rrBLUP and BGLR, and is adaptable to account for more complex interactions. By integrating genetic relationships and environmental influences, this approach provides a robust tool for advancing G×E studies and accelerating the development of superior crop varieties.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
1. Amadeu, R. R., Garcia, A. A. F., Munoz, P. R. & Ferrão, L. F. V. AGHmatrix: genetic relationship
matrices in R. Bioinformatics 39 (ed Schwartz, R.) ISSN: 1367-4811. doi:10 . 1093 /
bioinformatics/btad445. http://dx.doi.org/10.1093/bioinformatics/btad445 (2023).
2. Anthony, J. C., Eaton, W. W. & Henderson, A. S. Looking to the Future in Psychiatric Epidemiology.
Epidemiologic Reviews 17, 240–242. ISSN: 0193-936X. doi:10.1093/oxfordjournals.
epirev.a036182. http://dx.doi.org/10.1093/oxfordjournals.epirev.a036182 (1995).
3. Barros, A. C. A. V. B. d., Silva, M. A., Marques, R. D., Villegas, C. & Luciano, A. C. d. S.
Classification of sugarcane areas in Landsat images using machine learning algorithms. Brazilian
Journal of Biometrics 42, 147–157. ISSN: 2764-5290. doi:10 . 28951 / bjb . v42i2 . 693. http :
//dx.doi.org/10.28951/bjb.v42i2.693 (2024).
4. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Usinglme4.
Journal of Statistical Software 67. ISSN: 1548-7660. doi:10.18637/jss.v067.i01. http:
//dx.doi.org/10.18637/jss.v067.i01 (2015).
5. Burgueño, J., Crossa, J., Cornelius, P. L., Trethowan, R., McLaren, G. & Krishnamachari,
A. Modeling Additive × Environment and Additive × Additive × Environment Using Genetic
Covariances of Relatives of Wheat Genotypes. Crop Science 47, 311–320. ISSN: 1435-0653.
doi:10.2135/cropsci2006.09.0564. http://dx.doi.org/10.2135/cropsci2006.09.0564 (2007).
6. Costa-Neto, G. & Fritsche-Neto, R. Enviromics: bridging different sources of data, building
one framework. Crop Breeding and Applied Biotechnology 21. ISSN: 1518-7853. doi:10 . 1590 /
1984-70332021v21sa25. http://dx.doi.org/10.1590/1984-70332021v21Sa25 (2021).
7. Costa-Neto, G., Fritsche-Neto, R. & Crossa, J. Nonlinear kernels, dominance, and envirotyping
data increase the accuracy of genome-based prediction in multi-environment trials. Heredity
126, 92–106. ISSN: 1365-2540. doi:10.1038/s41437-020-00353-1. http://dx.doi.org/10.
1038/s41437-020-00353-1 (2021).
8. Crossa, J., Burgueño, J., Cornelius, P. L., McLaren, G., Trethowan, R. & Krishnamachari,
A. Modeling Genotype × Environment Interaction Using Additive Genetic Covariances of
Relatives for Predicting Breeding Values of Wheat Genotypes. Crop Science 46, 1722–1733.
ISSN: 1435-0653. doi:10.2135/cropsci2005.11-0427. http://dx.doi.org/10.2135/cropsci2005.
11-0427 (2006).
9. Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O. A., Costa-Neto, G., Dreisigacker, S.,
Montesinos-Lopez, A. & Bentley, A. R. The Modern Plant Breeding Triangle: Optimizing the
Use of Genomics, Phenomics, and Enviromics Data. Frontiers in Plant Science 12. ISSN: 1664-
462X. doi:10.3389/fpls.2021.651480. http://dx.doi.org/10.3389/fpls.2021.651480 (2021).
10. Cruz, D. D. M., Heinemann, A. B., Marcatti, G. E. & Resende, R. T. Defining the target population
of environments (TPE) for enviromics studies using R-based GIS tools. Crop Breeding
and Applied Biotechnology 25. ISSN: 1518-7853. doi:10.1590/1984- 70332024v25n1s09. http:
//dx.doi.org/10.1590/1984-70332024v25n1s09 (2025).
11. Cuevas, J., Crossa, J., Montesinos-López, O. A., Burgueño, J., Pérez-Rodríguez, P. & de los
Campos, G. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel
Models. G3 Genes|Genomes|Genetics 7, 41–53. ISSN: 2160-1836. doi:10.1534/g3.116.035584.
http://dx.doi.org/10.1534/g3.116.035584 (2017).
12. Cuevas, J., Granato, I., Fritsche-Neto, R., Montesinos-Lopez, O. A., Burgueño, J., Bandeira
e Sousa, M. & Crossa, J. Genomic-Enabled Prediction Kernel Models with Random Intercepts
for Multi-environment Trials. G3 Genes|Genomes|Genetics 8, 1347–1365. ISSN: 2160-
1836. doi:10.1534/g3.117.300454. http://dx.doi.org/10.1534/g3.117.300454 (2018).
13. Endelman, J. B. Ridge Regression and Other Kernels for Genomic Selection with R Package
rrBLUP. The Plant Genome 4, 250–255. ISSN: 1940-3372. doi:10.3835/plantgenome2011.08.
0024. http://dx.doi.org/10.3835/plantgenome2011.08.0024 (2011).
14. Gevartosky, R., Carvalho, H. F., Costa-Neto, G., Montesinos-López, O. A., Crossa, J. &
Fritsche-Neto, R. Enviromic-based kernels may optimize resource allocation with multi-trait
multi-environment genomic prediction for tropical Maize. BMC Plant Biology 23. ISSN: 1471-
2229. doi:10.1186/s12870-022-03975-1. http://dx.doi.org/10.1186/s12870-022-03975-1
(2023).
15. Gianola, D. Priors in Whole-Genome Regression: The Bayesian Alphabet Returns. Genetics
194, 573–596. ISSN: 1943-2631. doi:10.1534/genetics.113.151753. http://dx.doi.org/10.1534/
genetics.113.151753 (2013).
16. Henderson, C. R. A Simple Method for Computing the Inverse of a Numerator Relationship
MatrixUsed in Prediction of Breeding Values. Biometrics 32, 69. ISSN: 0006-341X. doi:10.2307/
2529339. http://dx.doi.org/10.2307/2529339 (1976).
17. Henderson, C. R. Estimation of Variance and Covariance Components. Biometrics 9, 226. ISSN:
0006-341X. doi:10.2307/3001853. http://dx.doi.org/10.2307/3001853 (1953).
18. Jarquín, D. et al. A reaction norm model for genomic selection using high-dimensional genomic
and environmental data. Theoretical and Applied Genetics 127, 595–607. ISSN: 1432-2242.
doi:10.1007/s00122-013-2243-1. http://dx.doi.org/10.1007/s00122-013-2243-1 (2014).
19. Martini, J. W. R., Crossa, J., Toledo, F. H. & Cuevas, J.On Hadamard and Kronecker products
in covariance structures for genotype × environment interaction. The Plant Genome 13. ISSN:
1940-3372. doi:10.1002/tpg2.20033. http://dx.doi.org/10.1002/tpg2.20033 (2020).
20. Montesinos-López, O. A., Montesinos-López, A., Crossa, J., Toledo, F. H., Pérez-Hernández,
O., Eskridge, K. M. & Rutkoski, J. A Genomic Bayesian Multi-trait and Multi-environment
Model. G3 Genes|Genomes|Genetics 6, 2725–2744. ISSN: 2160-1836. doi:10 . 1534 / g3 . 116 .
032359. http://dx.doi.org/10.1534/g3.116.032359 (2016).
21. Patterson, H. D. & Thompson, R. Recovery of inter-block information when block sizes are
unequal. Biometrika 58, 545–554. ISSN: 1464-3510. doi:10.1093/biomet/58.3.545. http://dx.
doi.org/10.1093/biomet/58.3.545 (1971).
22. Pérez, P. & de los Campos, G. Genome-Wide Regression and Prediction with the BGLR
Statistical Package. Genetics 198, 483–495. ISSN: 1943-2631. doi:10.1534/genetics.114.164442.
http://dx.doi.org/10.1534/genetics.114.164442 (2014).
23. Queiroz de Oliveira, A., Poczynek, M., Maris Machado Bittar, C. & Gonçalves de Lima, C.
Linear mixed-effects models and least confounded residuals in the modelling of Holstein calves’
performance. Brazilian Journal of Biometrics 42, 103–118. ISSN: 2764-5290. doi:10.28951/bjb.
v42i2.681. http://dx.doi.org/10.28951/bjb.v42i2.681 (2024).
24. Rao, C. R. Estimation of Heteroscedastic Variances in Linear Models. Journal of the American
Statistical Association 65, 161–172. ISSN: 1537-274X. doi:10.1080/01621459.1970.10481070.
http://dx.doi.org/10.1080/01621459.1970.10481070 (1970).
25. Rao, C. Estimation of variance and covariance components—MINQUE theory. Journal of Multivariate Analysis 1, 257–275. ISSN: 0047-259X. doi:10 .1016/0047- 259x(71)90001- 7. http :
//dx.doi.org/10.1016/0047-259X(71)90001-7 (1971).
26. Rao, C. Minimum variance quadratic unbiased estimation of variance components. Journal
of Multivariate Analysis 1, 445–456. ISSN: 0047-259X. doi:10.1016/0047- 259x(71)90019- 4.
http://dx.doi.org/10.1016/0047-259X(71)90019-4 (1971).
27. Resende, R. T., Hickey, L., Amaral, C. H., Peixoto, L. L., Marcatti, G. E. & Xu, Y. Satelliteenabled
enviromics to enhance crop improvement. Molecular Plant 17, 848–866. ISSN: 1674-
2052. doi:10.1016/j.molp.2024.04.005. http://dx.doi.org/10.1016/j.molp.2024.04.005
(2024).
28. Resende, R. T., Piepho, H.-P., Rosa, G. J. M., Silva-Junior, O. B., e Silva, F. F., de Resende,
M. D. V. & Grattapaglia, D. Enviromics in breeding: applications and perspectives on
envirotypic-assisted selection. Theoretical and Applied Genetics 134, 95–112. ISSN: 1432-2242.
doi:10.1007/s00122-020-03684-z. http://dx.doi.org/10.1007/s00122-020-03684-z (2021).
29. Resende, R. T., Xavier, A., Silva, P. I. T., Resende, M. P. M., Jarquin, D. & Marcatti, G. E.
GIS-based G×E modeling of maize hybrids through enviromic markers engineering. New
Phytologist 245, 102–116. ISSN: 1469-8137. doi:10.1111/nph.19951. http://dx.doi.org/10.1111/
nph.19951 (2025).
30. Rogers, A. R. & Holland, J. B. Environment-specific genomic prediction ability in maize
using environmental covariates depends on environmental similarity to training data. G3
Genes|Genomes|Genetics (ed Lipka, A) ISSN: 2160-1836. doi:10.1093/g3journal/jkab440. http:
//dx.doi.org/10.1093/g3journal/jkab440 (2022).
31. Searle, S. R. & Khuri, A. I. Matrix algebra useful for statistics ISBN: 978-1-118-93514-9. https:
/ /www.wiley.com/en- us /Matrix+Algebra+Useful+for+Statistics%2C+2nd+Edition- p-
9781118935149 (JohnWiley & Sons, 2017).
32. Solaymani, S., Ayatollahi Mehrgardi, A., Esmailizadeh, A., Tusell, L. & Momen, M. Performance
of pedigree and various forms of marker-derived relationship coefficients in genomic
prediction and their correlations. Journal of Animal Breeding and Genetics 137, 423–437. ISSN:
1439-0388. doi:10.1111/jbg.12467. http://dx.doi.org/10.1111/jbg.12467 (2020).
33. Teixeira, A. P. et al. Cell functional enviromics: Unravelling the function of environmental
factors. BMC Systems Biology 5. ISSN: 1752-0509. doi:10.1186/1752-0509-5-92. http://dx.doi.
org/10.1186/1752-0509-5-92 (2011).
34. VanRaden, P. Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science 91,
4414–4423. ISSN: 0022-0302. doi:10.3168/jds.2007-0980. http://dx.doi.org/10.3168/jds.2007-
0980 (2008).
35. Wright, S. Systems of mating. I. The biometric relations between parent and offspring. Genetics
6, 111–123. ISSN: 1943-2631. doi:10 .1093/genetics /6.2. 111. http : / /dx.doi .org/10.1093/
genetics/6.2.111 (1921).
36. Xavier, A., Muir, W. M. & Rainey, K. M. bWGR: Bayesian whole-genome regression. Bioinformatics. 36 (ed Schwartz, R.) 1957–1959. ISSN: 1367-4811. doi:10.1093/bioinformatics/btz794.