Spatial autocorrelation analysis of multivariate rural insurance data

Main Article Content

Walef Machado de Mendonça
https://orcid.org/0000-0002-0480-1660
Patrícia de Siqueira Ramos
https://orcid.org/0000-0003-4834-661X

Abstract

The environment in which agricultural activities are developed presents high risk and great uncertainty. Several factors related to the agricultural sector can generate fluctuations in the income of producers. These fluctuations must be faced through risk management support policies such as, for example, the hiring of rural insurance. This type of insurance enables the recovery of the financial capacity of the producer in the occurrence of adverse events that cause economic damage. Considering the relevance of rural insurance in the agricultural sector, this study aims to evaluate the spatial distribution of the variables of this type of insurance in Brazilian municipalities from 2006 to 2019. The data used were obtained from rural insurance censuses compiled by the Ministry of Agriculture, Livestock, and Supply. Principal Component Analysis (PCA)was used to reduce data dimensionality and Exploratory Spatial Data Analysis (ESDA) using the scores of the first PC was used to investigate the presence of spatial distribution patterns of rural insurance. By using PC scores, it was found that the highest concentrations of rural insurance policies are located in the South and Midwest regions of Brazil, and there is a tendency for an increase in the spatial dependence of rural insurance throughout the analyzed period. The identification of these areas shows how rural insurance is heterogeneously distributed in Brazil. This result suggests that some strategies can be adopted by policy makers and insurers in order to serve areas that have demand and are not yet covered by rural insurance.

Article Details

How to Cite
Machado de Mendonça, W., & de Siqueira Ramos, P. (2023). Spatial autocorrelation analysis of multivariate rural insurance data. Brazilian Journal of Biometrics, 41(4), 398–411. https://doi.org/10.28951/bjb.v41i4.642
Section
Articles

References

Almeida, E. Econometria espacial. Campinas–SP. Alínea (2012).

Andrade, L.Os Limites eAlternativas do Seguro Rural no Brasil. Globo Rural. https://globorural. globo.com/limites-e-alternativas-do-seguro-rural-no-brasil.html (2017).

Anselin, L. Local indicators of spatial association—LISA. Geographical analysis 27, 93–115 (1995).

BRASIL. Programa de Subvenção ao Prêmio do Seguro Rural: Relatório de Resultado 2017 tech. rep. (Brasília, DF: Ministério da Agricultura, Pecuária e Abastecimento (MAPA), 2018).

BRASIL. Programa de Subvenção ao Prêmio do Seguro Rural: Relatório de Resultado 2020 (Brasília, DF:

Ministério da Agricultura, Pecuária e Abastecimento (MAPA), 2021).

BRASIL. Relatório de Resultado 2018 (Brasília,DF: Ministério da Agricultura, Pecuária eAbastecimento (MAPA), 2019).

CEPEA. PIB do Agronegócio Brasileiro 2020 tech. rep. (Centro de Estudos Avançados em Economia Aplicada (CEPEA), Piracicaba, SP, 2021).

Dos Santos, G. R. & da Silva, F. C. Dez anos do programa de subvenção ao prêmio de seguro agrícola: proposta de índice técnico para análise do gasto público e ampliação do seguro tech. rep. (Texto para Discussão, 2017).

Dos Santos, G. R., de Sousa, A. G. & Alvarenga, G. Seguro agrícola no Brasil eo desenvolvimento do programa de subvenção ao prêmio tech. rep. (Texto para Discussão, 2013).

Everitt, B. & Hothorn, T. An introduction to applied multivariate analysis with R (Springer Science & Business Media, 2011).

Ferreira, A. L. C. J. & da Rocha Ferreira, L. Experiências internacionais de seguro rural: as novas perspectivas de política agrícola para o Brasil. Econômica 11 (2009).

Hunter, J. D. Matplotlib: A 2D graphics environment. Computing in science & engineering 9, 90–95 (2007).

IBGE. Censo Agropecuário 2017 Rio de Janeiro, RJ: IBGE. 2019.

IBGE. Portal de mapas Disponível em: https://portaldemapas.ibge.gov.br/. Acesso em: 04 mar. 2021. Rio de Janeiro, 2021.

Jenks, G. F. Optimal data classification for choropleth maps. Department of Geographiy, University of Kansas Occasional Paper (1977).

Jordahl, K. GeoPandas: Python tools for geographic data https://github.com/geopandas/geopandas. (2014).

Kluyver, T. et al. Jupyter Notebooks-a publishing format for reproducible computational workflows. (2016).

McKinney, W. et al. Data structures for statistical computing in python in Proceedings of the 9th Python in Science Conference 445 (2010), 51–56.

Mingoti, S. A. in Análise de dados através de métodos estatística multivariada: uma abordagem aplicada 295–295 (2007).

Rey, S. J. & Anselin, L. in Handbook of applied spatial analysis 175–193 (Springer, 2010).

Santos, G. R. & Silva, F. C. Dez anos do Programa de Subvenção ao Prêmio de Seguro Agrícola: proposta de índice técnico para análise do gasto público e ampliação do seguro tech. rep. (Ipea, Rio de Janeiro, 2017). http://repositorio.ipea.gov.br/bitstream/11058/7718/1/td_2290.pdf (2021).

Van DerWalt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Computing in science & engineering 13, 22–30 (2011).

Van Rossum, G. et al. Python Programming Language. in: USENIX annual technical conference 41, 136 (2007).

Waskom, M. L. Seaborn: statistical data visualization. Journal of Open Source Software 6, 3021 (2021).