A general approach to the isobolographic method

Main Article Content

Vladimir Panov

Abstract

Strict definitions and formal mathematical constructions are given to represent the main concepts of the isobolographic method as mathematical objects. In particular, a strict definition of zero interaction notion is introduced. The peculiarity of this definition is that this notion appears to depend on the dose-response function of a particular acting agent, whereas it is commonly believed that it is completely determined only by the whole set of acting agents. It is shown that without additional assumptions about the type of dose-response functions, a type of joint action of agents can be different and even opposite depending on the dose-response function of which the notion of zero interaction is considered. The only case when the concept of zero interaction is unambiguously defined and does not depend on the chosen dose-response
function is the case of scale equivalence of dose-response functions of all acting agents. A theorem on the representation of the zero-interaction manifold in the case of arbitrary single-factor dose-response functions is proved. Examples of analyzing the joint action of factors using isoboles for a two-factor linear model with a cross term and a quadratic model are considered.

Article Details

How to Cite
Panov, V. (2025). A general approach to the isobolographic method. Brazilian Journal of Biometrics, 43(1), e43737. https://doi.org/10.28951/bjb.v43i1.737
Section
Articles

References

Anderson, M. J. & Whitcomb, P. J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments 2nd. 311 pp. (Productivity Press, 2016). https://doi.org/10.1201/9781315382326

Atwal, N., Casey, S. L., Mitchell, V. A. & Vaughan, C. W. THC and gabapentin interactions in a mouse neuropathic pain model. Neuropharmacology 144, 115–121. ISSN: 0028-3908 (2019). https://doi.org/10.1016/j.neuropharm.2018.10.006

Basting, R. T., Spindola, H. M., de Oliveira Sousa, I. M., Queiroz, N. C. A., Trigo, J. R., de Carvalho, J. J. E. & Foglio, M. A. Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomedicine & Pharmacotherapy 112, 108693. ISSN: 0753-3322 (2019). https://doi.org/10.1016/j.biopha.2019.108693

Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect.Dis. 137, 122–130 (1978). https://doi.org/10.1093/infdis/137.2.122

Berenbaum, M. C. Isobolographic, algebraic and search methods in the analysis of multi-agent synergy. J.Am.Coll.Toxicol. 7, 927–938 (1988). https://doi.org/10.3109/10915818809014524

Berenbaum, M. C. Synergy, additivism and antagonism in immunosuppression. A critical review. Clin.Exp.Immunol. 28, 1–18 (1977).

Berenbaum, M. C. The Expected Effect of a Combination of Agents: the General Solution. J. Theor. Biol. 114, 413–431 (1985). https://doi.org/10.1016/s0022-5193(85)80176-4

Berenbaum, M. C. What is Synergy? Pharmacol. Rev. 41, 93–141 (1989).

Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939). https://doi.org/10.1111/j.1744-7348.1939.tb06990.x

Bosgra, S., van Eijkeren, J. C. H. & Slob, W. Dose addition and the isobole method as approaches for predicting the cumulative effect of non-interacting chemicals: A critical evaluation. Critical Reviews in Toxicology 39, 418–426 (2009). https://doi.org/10.1080/10408440902787592

Box, G. E. P. & Draper, N. R. Response surfaces, mixtures, and ridge analyses 2nd. 880 pp. (John Wiley and Sons, Inc., 2007). DOI:10.1002/0470072768

Brody, T. FDA’s Drug Review Process and the Package Label 653 pp. (Academic Press, 2018). https://doi.org/10.1016/C2017-0-01355-1

Chang, M. M., Nail, D. A., Kazic, T., Simmons, S. J. & Stapleton, A. E. Dose-response surface fits to drought and nitrogen limitation applied together allow mapping of loci that exhibit nonlinear responses. bioRhiv (2017). http://dx.doi.org/10.1101/186791

Clarke, B. R. Linear models. The Theory and application of analysis of variance 267 pp. (John Wiley & Sons, Inc, 2008). DOI:10.1002/9780470377994

Dumbreck, S. et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ 350. (2015). https://doi.org/10.1136/bmj.h949

Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharma. Res. and Persp. 3, e00149. ISSN: 2052-1707 (2015). https://doi.org/10.1002/prp2.149

Fraser, T. R. An experimental research on the antagonism between the actions of physiostigma and atropia. Proc. R. Soc. Edinburgh 7, 506–511 (1870–1871). doi:10.1017/S0370164600042565

Fraser, T. R. The antagonism between the actions of active substances. Br. Med. J. 2, 457–459 (1872). https://doi.org/10.1136/bmj.2.618.485

García, M. A. M. & Lage, M. A. P. Dose-response analysis in the joint action of two effectors: A new approach to simulation and identification and modelling of some basic interactions. PLOS One 8, e61391 (2013). https://doi.org/10.1371/journal.pone.0061391

Greco, W., Unkelbach, H.-D., Pöch, G., Sühnel, J., Kundi, M. & Bödeker, W. Consensus on concepts and terminology for combined action assessment: The Saariselkä agreement. Archives of complex environmental studies 4, 65–69 (1992).

Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. rev. 47, 331–385 (1995).

Izelu, C. O., Eze, S. C., Oreko, B. U., Edward, B. A. & Garba, D. K. Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel. International Journal of Emerging Technology and Advanced Engineering 3, 13–17 (2013).

Janke, S. & Tinsley, F. C. Introduction to Linear Models and Statistical Inference 600 pp. (Wiley- Interscience, 2005). doi: 10.1111/j.1467-985X.2006.00414_8.x

Kappele, W. D. Blind Analysis for Design of Experiments and Response Surface Methodology: Minitab Edition 146 pp. (CreateSpace Independent Publishing Platform, 2017).

Khuri, A. I. An overview of the use of generalized linear models in response surface methodology 2023–2034 (Nonlinear Anal., 2001). https://doi.org/10.1016/S0362-546X(01)00330-3

Khuri, A. I. Linear Model Methodology 542 pp. (Chapman & Hall/CRC, 2010). DOI 10.1007/s00362-011-0382-5

Khuri, A. I. & Mukhopadhyay, S. Response Surface Methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2, 128–149 (2010). https://doi.org/10.1002/wics.73

Loewe, S. Antagonisms and antagonists. Pharmacol. Rev. 9, 237–243 (1957).

Loewe, S. Die quantitativen Problems der Pharmakologie. Ergeb. Physiol. 27, 47–187 (1928). https://doi.org/10.1007/BF02322290

Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953).

Loewe, S. Über Kombinationswirkungen. VIII. Mitteilung: Wirkungen von Diäthylbarbitursäure-p-Kresotinsäure-Codeingemischen. Arch. Exp. Pathol. Pharmakol. 120, 41–47 (1927).

Loewe, S., Käer, E. & Muischnek, H. Über Kombinationswirkungen. VII. Mitteilung: Grundlagen der Prüfung von Drei-Pharmakamischungen-Anwendung auf Phenazetin Azetylsalizylaäure Codeinemischungen. Arch. Exp. Pathol. Pharmakol. 120, 25–40 (1927). https://doi.org/10.1007/BF01859944

Loewe, S. & Muischnek, H. Über Kombinationswirkungen. I. Mitteilung: Hilfsmittel der Fragestellung. Arch. Exp. Pathol. Pharmakol. 114, 313–326 (1926). https://doi.org/10.1007/BF01952257

Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response surface methodology: process and product optimization using designed experiments 4th. 856 pp. (John Wiley & Sons Inc., 2016). https://doi.org/10.2307/1270613

Nazni, P. & Gracia, J. Application of Response Surface Methodology in the Development of Barnyard Millet Bran Incorporated Bread. IJIRSET 3, 16041 (2014). http://dx.doi.org/10.15680/IJIRSET.2014.0309038

Short, T. G. & Hannam, J. A. in Pharmacology and Physiology for Anesthesia (eds Hemmings, H. C. & Egan, T. D.) 2nd Ed., 113 –129 (Elsevier, 2019). ISBN: 978-0-323-48110-6. https://doi.org/10.1016/B978-0-323-48110-6.00006-5

Sühnel, J. Zero Interaction Response Surfaces, Interaction Functions and Difference Response Surfaces for Combinations of Biological Active Agents. Arzneimittel-Forschung/Drug Research 42 (II), 1251–1258 (1992). https://doi.org/10.1016/S0278-6915(97)00087-2

Syracuse, K. C. & Greco, W. R. Comparison between the method of Chou and Talalay and a new method for the assessment of the combined effects of drugs: a Monte-Carlo simulation study. American Statistical Association Proceedings of the Biopharmaceutical Section, 127–132 (1986).

Tallarida, R. Drug Synergism and Dose-Effect Data Analysis 268 pp. (CRC/Chapman-Hall, 2000). https://doi.org/10.1201/9781420036107

Tang, J., Wennerberg, K & Aittokallio, T. What is synergy? The Saariselkä agreement revisited. Frontiers in Pharmacology 6 (2015). http://dx.doi.org/10.3389/fphar.2015.00181

Trinh, T. K. & Kang, L. S. Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests. Environ. Eng. Res. 15, 063–070 (2010). https://doi.org/10.4491/eer.2010.15.2.063

Tverskoy, M., Ben-Shlomo, I., Ezry, J., Finger, J. & Fleyshman, G. Midazolam acts synergistically with methohexitone for induction of anaesthesia. Br. J. Anaesth. 63, 109–112 (1989). https://doi.org/10.1093/bja/63.1.109

Tverskoy, M., Fleyshman, G., Bradley, E. L. J. & Kissin, I. Midazolam-thiopental anesthetic interactions in patients. Anesth. Analg. 67, 342–345 (1988).

Tverskoy, M., Fleyshman, G., Ezry, J., Bradley, E. J. & Kissin, I. Midazolam-morphine sedative interactions in patients. Anesth. Analg. 68, 282–285 (1989). http://dx.doi.org/10.1213/00000539-198903000-00017

Van den Berg, J. P., Vereecke, H. E. M., Proost, J. H., Eleveld, D. J., Wietasch, J. K. G., Absalom, A. R. & Struys, M. M. R. F. Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. British Journal of Anaesthesia 118, 44–57. ISSN: 0007-0912 (2017). https://doi.org/10.1093/bja/aew312

Weinstein, J. N., Bunow, B., Weislow, O. S., Schinazi, F., Wahl, S. M., Wahl, L. M. & Szebeni, J. Synergistic drug combinations in AIDS therapy. Ann. NY Acad. Sci. 616, 367–384 (1990). https://doi.org/10.1111/j.1749-6632.1990.tb17857.x

Zeliger, H. I. Human Toxicology of Chemical Mixtures 574 pp. (Elsevier Inc., 2011). https://doi.org/10.1016/C2010-0-67068-4