A general approach to the isobolographic method
Conteúdo do artigo principal
Resumo
Strict definitions and formal mathematical constructions are given to represent the main concepts of the isobolographic method as mathematical objects. In particular, a strict definition of zero interaction notion is introduced. The peculiarity of this definition is that this notion appears to depend on the dose-response function of a particular acting agent, whereas it is commonly believed that it is completely determined only by the whole set of acting agents. It is shown that without additional assumptions about the type of dose-response functions, a type of joint action of agents can be different and even opposite depending on the dose-response function of which the notion of zero interaction is considered. The only case when the concept of zero interaction is unambiguously defined and does not depend on the chosen dose-response
function is the case of scale equivalence of dose-response functions of all acting agents. A theorem on the representation of the zero-interaction manifold in the case of arbitrary single-factor dose-response functions is proved. Examples of analyzing the joint action of factors using isoboles for a two-factor linear model with a cross term and a quadratic model are considered.
Detalhes do artigo

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Referências
Anderson, M. J. & Whitcomb, P. J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments 2nd. 311 pp. (Productivity Press, 2016). https://doi.org/10.1201/9781315382326
Atwal, N., Casey, S. L., Mitchell, V. A. & Vaughan, C. W. THC and gabapentin interactions in a mouse neuropathic pain model. Neuropharmacology 144, 115–121. ISSN: 0028-3908 (2019). https://doi.org/10.1016/j.neuropharm.2018.10.006
Basting, R. T., Spindola, H. M., de Oliveira Sousa, I. M., Queiroz, N. C. A., Trigo, J. R., de Carvalho, J. J. E. & Foglio, M. A. Pterodon pubescens and Cordia verbenacea association promotes a synergistic response in antinociceptive model and improves the anti-inflammatory results in animal models. Biomedicine & Pharmacotherapy 112, 108693. ISSN: 0753-3322 (2019). https://doi.org/10.1016/j.biopha.2019.108693
Berenbaum, M. C. A method for testing for synergy with any number of agents. J. Infect.Dis. 137, 122–130 (1978). https://doi.org/10.1093/infdis/137.2.122
Berenbaum, M. C. Isobolographic, algebraic and search methods in the analysis of multi-agent synergy. J.Am.Coll.Toxicol. 7, 927–938 (1988). https://doi.org/10.3109/10915818809014524
Berenbaum, M. C. Synergy, additivism and antagonism in immunosuppression. A critical review. Clin.Exp.Immunol. 28, 1–18 (1977).
Berenbaum, M. C. The Expected Effect of a Combination of Agents: the General Solution. J. Theor. Biol. 114, 413–431 (1985). https://doi.org/10.1016/s0022-5193(85)80176-4
Berenbaum, M. C. What is Synergy? Pharmacol. Rev. 41, 93–141 (1989).
Bliss, C. I. The toxicity of poisons applied jointly. Ann. Appl. Biol. 26, 585–615 (1939). https://doi.org/10.1111/j.1744-7348.1939.tb06990.x
Bosgra, S., van Eijkeren, J. C. H. & Slob, W. Dose addition and the isobole method as approaches for predicting the cumulative effect of non-interacting chemicals: A critical evaluation. Critical Reviews in Toxicology 39, 418–426 (2009). https://doi.org/10.1080/10408440902787592
Box, G. E. P. & Draper, N. R. Response surfaces, mixtures, and ridge analyses 2nd. 880 pp. (John Wiley and Sons, Inc., 2007). DOI:10.1002/0470072768
Brody, T. FDA’s Drug Review Process and the Package Label 653 pp. (Academic Press, 2018). https://doi.org/10.1016/C2017-0-01355-1
Chang, M. M., Nail, D. A., Kazic, T., Simmons, S. J. & Stapleton, A. E. Dose-response surface fits to drought and nitrogen limitation applied together allow mapping of loci that exhibit nonlinear responses. bioRhiv (2017). http://dx.doi.org/10.1101/186791
Clarke, B. R. Linear models. The Theory and application of analysis of variance 267 pp. (John Wiley & Sons, Inc, 2008). DOI:10.1002/9780470377994
Dumbreck, S. et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ 350. (2015). https://doi.org/10.1136/bmj.h949
Foucquier, J. & Guedj, M. Analysis of drug combinations: current methodological landscape. Pharma. Res. and Persp. 3, e00149. ISSN: 2052-1707 (2015). https://doi.org/10.1002/prp2.149
Fraser, T. R. An experimental research on the antagonism between the actions of physiostigma and atropia. Proc. R. Soc. Edinburgh 7, 506–511 (1870–1871). doi:10.1017/S0370164600042565
Fraser, T. R. The antagonism between the actions of active substances. Br. Med. J. 2, 457–459 (1872). https://doi.org/10.1136/bmj.2.618.485
García, M. A. M. & Lage, M. A. P. Dose-response analysis in the joint action of two effectors: A new approach to simulation and identification and modelling of some basic interactions. PLOS One 8, e61391 (2013). https://doi.org/10.1371/journal.pone.0061391
Greco, W., Unkelbach, H.-D., Pöch, G., Sühnel, J., Kundi, M. & Bödeker, W. Consensus on concepts and terminology for combined action assessment: The Saariselkä agreement. Archives of complex environmental studies 4, 65–69 (1992).
Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. rev. 47, 331–385 (1995).
Izelu, C. O., Eze, S. C., Oreko, B. U., Edward, B. A. & Garba, D. K. Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel. International Journal of Emerging Technology and Advanced Engineering 3, 13–17 (2013).
Janke, S. & Tinsley, F. C. Introduction to Linear Models and Statistical Inference 600 pp. (Wiley- Interscience, 2005). doi: 10.1111/j.1467-985X.2006.00414_8.x
Kappele, W. D. Blind Analysis for Design of Experiments and Response Surface Methodology: Minitab Edition 146 pp. (CreateSpace Independent Publishing Platform, 2017).
Khuri, A. I. An overview of the use of generalized linear models in response surface methodology 2023–2034 (Nonlinear Anal., 2001). https://doi.org/10.1016/S0362-546X(01)00330-3
Khuri, A. I. Linear Model Methodology 542 pp. (Chapman & Hall/CRC, 2010). DOI 10.1007/s00362-011-0382-5
Khuri, A. I. & Mukhopadhyay, S. Response Surface Methodology. Wiley Interdisciplinary Reviews: Computational Statistics 2, 128–149 (2010). https://doi.org/10.1002/wics.73
Loewe, S. Antagonisms and antagonists. Pharmacol. Rev. 9, 237–243 (1957).
Loewe, S. Die quantitativen Problems der Pharmakologie. Ergeb. Physiol. 27, 47–187 (1928). https://doi.org/10.1007/BF02322290
Loewe, S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 3, 285–290 (1953).
Loewe, S. Über Kombinationswirkungen. VIII. Mitteilung: Wirkungen von Diäthylbarbitursäure-p-Kresotinsäure-Codeingemischen. Arch. Exp. Pathol. Pharmakol. 120, 41–47 (1927).
Loewe, S., Käer, E. & Muischnek, H. Über Kombinationswirkungen. VII. Mitteilung: Grundlagen der Prüfung von Drei-Pharmakamischungen-Anwendung auf Phenazetin Azetylsalizylaäure Codeinemischungen. Arch. Exp. Pathol. Pharmakol. 120, 25–40 (1927). https://doi.org/10.1007/BF01859944
Loewe, S. & Muischnek, H. Über Kombinationswirkungen. I. Mitteilung: Hilfsmittel der Fragestellung. Arch. Exp. Pathol. Pharmakol. 114, 313–326 (1926). https://doi.org/10.1007/BF01952257
Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response surface methodology: process and product optimization using designed experiments 4th. 856 pp. (John Wiley & Sons Inc., 2016). https://doi.org/10.2307/1270613
Nazni, P. & Gracia, J. Application of Response Surface Methodology in the Development of Barnyard Millet Bran Incorporated Bread. IJIRSET 3, 16041 (2014). http://dx.doi.org/10.15680/IJIRSET.2014.0309038
Short, T. G. & Hannam, J. A. in Pharmacology and Physiology for Anesthesia (eds Hemmings, H. C. & Egan, T. D.) 2nd Ed., 113 –129 (Elsevier, 2019). ISBN: 978-0-323-48110-6. https://doi.org/10.1016/B978-0-323-48110-6.00006-5
Sühnel, J. Zero Interaction Response Surfaces, Interaction Functions and Difference Response Surfaces for Combinations of Biological Active Agents. Arzneimittel-Forschung/Drug Research 42 (II), 1251–1258 (1992). https://doi.org/10.1016/S0278-6915(97)00087-2
Syracuse, K. C. & Greco, W. R. Comparison between the method of Chou and Talalay and a new method for the assessment of the combined effects of drugs: a Monte-Carlo simulation study. American Statistical Association Proceedings of the Biopharmaceutical Section, 127–132 (1986).
Tallarida, R. Drug Synergism and Dose-Effect Data Analysis 268 pp. (CRC/Chapman-Hall, 2000). https://doi.org/10.1201/9781420036107
Tang, J., Wennerberg, K & Aittokallio, T. What is synergy? The Saariselkä agreement revisited. Frontiers in Pharmacology 6 (2015). http://dx.doi.org/10.3389/fphar.2015.00181
Trinh, T. K. & Kang, L. S. Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests. Environ. Eng. Res. 15, 063–070 (2010). https://doi.org/10.4491/eer.2010.15.2.063
Tverskoy, M., Ben-Shlomo, I., Ezry, J., Finger, J. & Fleyshman, G. Midazolam acts synergistically with methohexitone for induction of anaesthesia. Br. J. Anaesth. 63, 109–112 (1989). https://doi.org/10.1093/bja/63.1.109
Tverskoy, M., Fleyshman, G., Bradley, E. L. J. & Kissin, I. Midazolam-thiopental anesthetic interactions in patients. Anesth. Analg. 67, 342–345 (1988).
Tverskoy, M., Fleyshman, G., Ezry, J., Bradley, E. J. & Kissin, I. Midazolam-morphine sedative interactions in patients. Anesth. Analg. 68, 282–285 (1989). http://dx.doi.org/10.1213/00000539-198903000-00017
Van den Berg, J. P., Vereecke, H. E. M., Proost, J. H., Eleveld, D. J., Wietasch, J. K. G., Absalom, A. R. & Struys, M. M. R. F. Pharmacokinetic and pharmacodynamic interactions in anaesthesia. A review of current knowledge and how it can be used to optimize anaesthetic drug administration. British Journal of Anaesthesia 118, 44–57. ISSN: 0007-0912 (2017). https://doi.org/10.1093/bja/aew312
Weinstein, J. N., Bunow, B., Weislow, O. S., Schinazi, F., Wahl, S. M., Wahl, L. M. & Szebeni, J. Synergistic drug combinations in AIDS therapy. Ann. NY Acad. Sci. 616, 367–384 (1990). https://doi.org/10.1111/j.1749-6632.1990.tb17857.x
Zeliger, H. I. Human Toxicology of Chemical Mixtures 574 pp. (Elsevier Inc., 2011). https://doi.org/10.1016/C2010-0-67068-4